Skip to content

machine-learning-2020

  • Home
  • ML-101
  • ML-102
  • Books
  • Learning
    • DataBase
    • Tutorial
    • Lectures
    • Videos
    • Computer Experiments
    • References
    • PhD Thesis
      • English
      • French
  • Applications
    • TCAD-EDA
    • Semiconductor
    • Software
      • SCIKITLEARN
      • Sandia National Laboratories
        • DAKOTA
        • Publications
  • Machine Learning Techniques
    • General Papers
    • Gaussian Process
      • Gaussian Process : PhD Thesis
      • Publications
    • Artificial Neural Networks
    • Genetic Algorithm
    • Meta-Models
    • Genetic Programming
    • Least Squares, Weighted Least Squares, Moving Least Squares Methods

English

Gaussian Processes – Iterative Sparse Approximations

Lehel Csato

Flexible and efficient Gaussian process models for machine learning

Edward Lloyd Snelson

NONLINEAR DYNAMICS IDENTIFICATION USING GAUSSIAN PROCESS PRIOR MODELS WITHIN A BAYESIAN CONTEXT

Keith Neo Kian Seng

Bayesian Gaussian Processes for Regression and Classification

Mark N. Gibbs

Efficient Reinforcement Learning using Gaussian Processes

Marc Peter Deisenroth

Combining Genetic Algorithms and Neural Networks: The Encoding Problem

 Philipp Koehn

EVALUATION OF GAUSSIAN PROCESSES AND OTHER METHODS FOR NON-LINEAR REGRESSION

Carl Edward Rasmussen

Multi-fidelity Gaussian process regression for computer experiments

Loic Le Gratiet

Design and Analysis of Computer Experiments for Screening Input Variables

Hyejung Moon

Global sensitivity analysis for nested and multiscale modelling

Yann Caniou

Post navigation
Older posts
Newer posts
← Previous Page1 … Page4 Page5 Page6 Page7 Next →
© 2025 machine-learning-2020 • Built with GeneratePress