Skip to content

machine-learning-2020

  • Home
  • ML-101
  • ML-102
  • Books
  • Learning
    • DataBase
    • Tutorial
    • Lectures
    • Videos
    • Computer Experiments
    • References
    • PhD Thesis
      • English
      • French
  • Applications
    • TCAD-EDA
    • Semiconductor
    • Software
      • SCIKITLEARN
      • Sandia National Laboratories
        • DAKOTA
        • Publications
  • Machine Learning Techniques
    • General Papers
    • Gaussian Process
      • Gaussian Process : PhD Thesis
      • Publications
    • Artificial Neural Networks
    • Genetic Algorithm
    • Meta-Models
    • Genetic Programming
    • Least Squares, Weighted Least Squares, Moving Least Squares Methods

Stanford University School of Engineering

instructors:

  • Fei-Fei Li: http://vision.stanford.edu/feifeili/
  • Justin Johnson: http://cs.stanford.edu/people/jcjohns/
  • Serena Yeung: http://ai.stanford.edu/~syyeung/

Justin Johnson

Follow the link below to see the video and get the link to the slides

  1. Lecture 1 | Introduction to Convolutional Neural Networks for Visual Recognition

  2. Lecture 2 | Image Classification

  3. Lecture 3 | Loss Functions and Optimization

  4. Lecture 4 | Introduction to Neural Networks

  5. Lecture 5 | Convolutional Neural Networks

  6. Lecture 6 | Training Neural Networks I

  7. Lecture 7 | Training Neural Networks II

  8. Lecture 8 | Deep Learning Software

  9. Lecture 9 | CNN Architectures

  10. Lecture 10 | Recurrent Neural Networks

  11. Lecture 11 | Detection and Segmentation

  12. Lecture 12 | Visualizing and Understanding

  13. Lecture 13 | Generative Models

  14. Lecture 14 | Deep Reinforcement Learning

  15. Lecture 15 | Efficient Methods and Hardware for Deep Learning

  16. Lecture 16 | Adversarial Examples and Adversarial Training

 

 

Post navigation
Hands-On Machine Learning – Aurélien Geron
Machine-Learnia – Guillaume Saint-Cirgue
© 2025 machine-learning-2020 • Built with GeneratePress